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Abstract

This paper proposes two new approaches to rapid speaker
adaptation of acoustic models by using genetic algorithms.
Whereas conventional speaker adaptation techniques yield
adapted models which represent local optimum solutions, ge
netic algorithms are capable to provide multiple optimduso
tions, thereby delivering potentially more robust adaptest-
els. We have investigated two different strategies of apfithn
of the genetic algorithm in the framework of speaker adapta-
tion of acoustic models. The first approadi4) consists in
using a genetic algorithm to adapt the set of Gaussian means t
a new speaker. The second approaghi(+ EV) uses the ge-
netic algorithm to enrich the set of speaker-dependanesysst
employed by the EigenVoices. Experiments with Besource
Managementorpus show that, with one adaptation utterance,
GA can improve the performances of a speaker-independant
system as efficiently as EigenVoices. The metlibd + EV
outperforms Eigen\oices.

1. Introduction

Reducing acoustic mismatches due to speaker variability
between the training conditions and the testing conditisres
major problem in automatic speech recognition. This proble

is particularly difficult for rapid adaptation, when the dshle
amount of adaptation data is small.

Among the speaker adaptation techniques which tackle this
problem efficiently, EigenVoices [5], [6], [4] and methods
combining MLLR and EigenVoices [7], [1], [2], [11] have
shown to rapidly adapt to a new speaker the Gaussian means of
the speaker-independant system (SIS).

EigenVoices can improve the performances of an ASRS
even if only one adaptation utterance has been used. This
outstanding result can be explained by the fact that Eigeego
employsa priori information about the inter-speaker variations,
by using several well-trained speaker-dependant systefns.
priori information enables EigenVoices to estimate much less
parameters thaWLLR.

In [7] a structural version of EigenVoice$EV) is proposed

to push back the early saturation encountered by the regular
version of EigenVoices. Four different methods combining
the concepts of botBtructural MLLRand EigenVoices-based
techniques £V or SEV) are also presented. For a supervised
batch adaptation, the four methods outperforms BOWALL R

and EV whatever the available amount of adaptation data.

The scheme presented in [1] extends the standard Eigersvoice
technique to large-vocabulary continuous speech redognit
by training the acoustic models of each training speaken &b
models with the help dfILLR andMAP. In [2], the eigenspace
representing the inter-speaker variations is built uirigcipal

Component Analysis (PCA)om the parameters of thdLLR
regression matrices obtained for each training speakere Th
regression matrices computed for the adapted models of the
new speaker are then constrained to be located in the space
spanned by the firsiK' eigen-matrices. This method thus
solves the problem of huge memory requirements of the
EigenVoices technique. Indeed the number of parameteheof t
regression matrices is much smaller than the parameters of a
speaker-independant system. In [11], the authors propose t
approaches which combifdLLR and EigenVoices adaptation.
The Approach B exposed in [11] gives similar results to
EigenVoices technique but requires far less online memory
and computation load. In this approach, a new fast algorithm
for maximum-likelihood coefficient estimation is used ahd t
selection of the eigenspace includes Sl-model information

All of the adaptation techniques of acoustic models
solve a numerical optimization problem. Such techniques
try to estimate the best parameters of the acoustic models by
maximizing a function of gain, thieg likelihood Yet all of the
preceeding quoted methods are suboptimal in the sense that,
because they are based on the E-M procedure to estimate the
parameters of the acoustic models, they can only find a local
optimum solution.

In the current study we propose to use genetic algo-
rithms [8] in the framework of rapid speaker adaptation of
acoustic models. Many reasons motivated the use of thigyfami
of algorithms.

Such algorithms can theoretically provide a global optimum
solution, by exploring a population of solutions. Besides,
genetic algorithms can estimate directly the parametetheof
acoustic models without using some adaptation transfoomst
(like linear regressions iMLLR). Thus noa priori constraint

is assumed on the transformations which are applied to the
parameters of the HMMs, so that a finest adaptation may be
obtained.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the general principles of genetic algosth®ec-
tion 3 gives the characteristics of the genetic algorithnuaed
for speaker adaptation. The regular version of EigenVoises
explained in section 4, and section 5 presents the new scheme
which combine a genetic algorithm with EigenVoices. Setéo
evaluates both proposed methods using data frorRés®urce
Management (RMgorpus. Section 7 discusses on the main
drawbacks of techniques based on a genetic algorithm.Iinal
concluding remarks and future research issues are giveecn S
tion 8.



2. Genetic Algorithms

Genetic algorithms are methods for solving numerical ojatim
tion problems. As most optimization techniques, genetioal
rithms look for the best solution in a search space by maximiz
ing a function of gain. The search in the space of solutiogstis
inspired from the natural selection of Darwin, which asates
the diversity begetted by chance and the surviving of thetmos
fitted individuals.

Typically, genetic algorithms start from an initial poptide of
solutions [ndividualg and try to obtain afteiV;r iterations a
population which contains better solutions than the ihfi@p-
ulation. In the terminology of genetic algorithms, a sautis
represented by ahromosomevhich is a vector consisting of
genes A gene is one of the parameters to estimate to solve the
optimization problem. Each solutionis characterized by fit-
ness functiory (s) which represents its quality of adequation to
the considered problem.

To create a new population of solutions, standard genejiz al
rithms use three genetic operators at each iteration : tee op
ator ofreproduction the operator ofnutationand the operator

of selection The reproduction operator can be seen as a way
to provide an exchange of information eventually relevast b
tween solutions. Once all of the children have been gergrate
with the reproduction operator, they can be subjected toesom
mutations. The idea behind mutation holds in the introduncti
of some variations into the population. Finally, the setect
operator enables the most fitted individuals of the currept p
ulation to survive and thus to be able to perpetuate theietien
material if they are selected to belong to the populatiorhef t
next iteration.

The characteristics of the genetic algorithm we used foalspe
adaptation are more precisely defined in the next section.

3. Genetic Algorithmsfor Speaker
Adaptation

In our case, a solution is a (super)vector consisting offathe
Gaussian mean vectors of all of the models of a speech recogni
tion system; a gene is a Gaussian mean vector. A genetic popu-
lation is represented by all such solutienThefitness function
f(s) of a solutions is defined by :

exp (log p(g/Ms)>

exp (Zs log P(g/Ms>>

f(s)

whereO, M, andT represent respectively the adaptation data,
the acoustic models of the solutierand the number of frames
of the adaptation data.

The initial population is commonly made up of the supervec-
tors extracted from the speaker-dependant systems andHeom
speaker-independant system.

3.1. Reproduction

This operator consists in (1) selecting among the indiviglo&

the current population pairs of parents and (2) merging pach

of parents to generate two offsprings.

To be a member of a pair of parents, an individual is selected
with a probability proportional to its fithess function. The
higher the value of its fitness function, the more likely tioe-c
responding individual will be selected as a parent. Of caurs
the parents of a pair must be different. ¢t be the number

of individuals in the current population, thé¥y /2 pairs of par-
ents will be defined in this step.

Once all of theN; /2 pairs of parents have been defined, the
parents of each pair are merged to generate the offsprirgs. T
merging of two parents consists in swappirgoésing-over
step and combiningifterpolation stepgroups of genes to gen-
erate two offsprings. For example, if two pareptsandp- are
represented by vectors containiBigenes :

p = (a1,az2,a3 )

and
p2 = (b1,b2,b3)

then crossing the chromosomes after the second gene and defin
ing the interpolation factor as € [0;1] would produce two
offspringso; andos :

o1 =(ayxif+br*(1—if),as*iy+bz*(1—if),
bs xif +as* (1 —if))

and

02 = (brxif+ar*(1—if),byxif+az*(l—if),
az xif +bs* (1 —if))

The numberN¢p of crossing points (in our casWep = 1)
and the interpolation factar; are parameters of the algorithm
and remain unchanged for all iterations. The position oheac
crossing point is randomly generated for each pair of parent

3.2. Mutation

Let p,, be the probability of mutation of a gene, the mean of
the gaussiarngeng g ando, the variance related to the gaussian
g in the speaker-independant system. Then mutation comsists
generating a random numbere [0; 1[ for each geng of each
children’s chromosome and modifying this gepd r < pp,.

In this case, the new valug, of the geneg is iy = pg +

s * o4 Wheres is a random number generated within the range
[—Ym;ym]. 7m is the coefficient of mutation. It represents
the degree of conservation of a gene : the highgrthe more
radically a gene may be altered by mutations and inverggly.
and~,, are parameters of the algorithm.

3.3. Selection

The N; parents of the next population are selected as follows.
The Ng best individuals in the current total population (parents
+ generated children) are first selected to belong to the next
population according to their fithess functioz is another
parameter of the algorithm. The highAtz, the more parents
are likely to be chosen to be a part of the next population. The
Nr — Ng best generated children are then selected to be mem-
bers of the next population.

4. EigenVoices

EigenVoices £V) technique constrains the adapted models to
be located in a dimensionality reduced speaker-space. The
speaker space reduced in dimension is obtained by applying a
dimensionality reduction technigdeto a set ofT" supervec-

tors of dimensionD extracted fromI' well-trained speaker-
dependant (SD) models. A supervecjoiis made up of the

IPrincipal Component Analysis (PCA) for instance



parameters of the acoustic models that have to be adaptpd. Ty
ically, it consists of the concatenation of all of the Gaassi
mean vectors of all of the models of a speaker-dependant sys-
tem, if only Gaussian means need to be adapted. Thus :

s N )

o= (pa, oy oy iy

where N is the total number of gaussians of a speaker-
dependant system.

This offline step yieldd" supervectors of dimensiaP, called

the eigenvectors. To build the reduced speaker-space troaly

K first eigenvectorgei, ez, - ,ex } With K < T << D are
kept. Related to an origiey 2, theseK eigenvoices, which cap-
ture most of the variation of the training data, span the cedu
speaker-space of dimensidn.

A new speaker is then located in the reduced speaker-space by
a vector ofK + 1 weights{wo, w1, - ,wk}.

The supervectof; of the adapted models is then obtained us-
ing the equationi = ZkK:O wy er. The K + 1 weights

are generally estimated usinglaximum Likelihood Eigen-
Decomposition (MLED]9] to maximize the likelihood of the
adaptation data. The other HMM parameters are obtained from
the SI-model parameters.

5. Combining GA with EV

This approach consists in, first, using the genetic algorith

get a final population ofV; potential systems adapted to the
new speaker. Among thes¥; systems, theéVs best systems
are selected to be included into the set of Thé&SD systems
used by the regular version of EigenVoices. The EigenVoices
technique is then applied (as explained in the previoussgct

to the speaker-independant system using an initial spepkee

of T + Ng systems.

We assume that the inclusion of some systems adapted to the
new speaker into the initial speaker spacelosystems will
make it closer to the new speaker. Hence the estimation of the
weights by the EigenVoices will be more robust.

6. Experimental Evaluation
6.1. Experimental Conditions

EigenVoices and the speaker adaptation techniques based on
genetic algorithms have been implemented into the autemati
speech recognition system ESPER] and evaluated on the
Resource Management (REQrpus.

The speech signals iRM are sampled at 16 kHz and were
parameterized into the 11 MFC(31 to C'11 and the 12 first

and second order time derivatives 60 to C'11, yielding a
35-dimensional feature vector.

The speaker-independant training set of RM1 was used to trai
the acoustic models of both the speaker-independant system
and the speaker-dependant systems. This set groups togethe

speech data from 16 speakers (7 female and 9 male speakers) of
the speaker-dependant set RM2 for the adaptation phasband t
recognition phase. Each speaker uttered 600 training rsezae
used for the adaptation phase only. For the recognitioneptzas
total of 1280 utterances were tested : 120 sentences peespea
for four of them and 100 utterances per speaker for eight of
them.

The acoustic units in the speaker-independant system and
in each speaker-dependant system are represented by 45 HMMs
with 3 states and a HMM with one state to handle silence and
short pause. The probability density function of each state
is modelled by a mixture of 8 gaussians. Speech recognition
experiments were conducted by using the regward-pair
grammar ofRM.

EigenVoices was parameterized to estingdtaveights.30
weights are related to tt88) first eigenvectors and one weight is
associated to the supervectar;s extracted from the SIS. The
supervectorssrs is used as the origin of the reduced speaker
space.

The initial population of the genetic algorithm is made up of
the 72 speaker-dependant systems and the speaker-independant
system. The genetic algorithm was parameterized With =

20, Ncp 1, iy = 0.2, p, = 0.0001, v, = 0.01 and

Ng = 73. This parameterization seemed to provide the best
results.

6.2. Experimental Results

The subsequent results represents the average word accurac
(WA) for sixteen test speakers, by taking a confidence inter-
val of +1%, with a risk of 5%. The averageWA of the
speaker-dependant systems i94fl %; the WAof the speaker-
independant system is 88.8% *.

The table 1 presents the results of the two proposed schemes
GA andGA + EV compared to the EigenVoices, for a super-
vised batch adaptation with one adaptation utterance.

Baseline 83.8%
EV 84.3 %
GA 84.3 %
GA+EV(Ns =2) | 845%
GA+EV (Ns =5) | 84.6 %
GA+EV (N5 = 10) | 84.7%

Table 1: Comparison of the proposed genetic algorithm based
approaches with EigenVoices for one adaptation utterance

EV andG A give the same improvement of performances
of the speaker-independant system. Although the genetic al

23 female and 49 male american native speakers. Each speaker 9°Tithm had to estimate a huge number of parameters (about

pronounced 40 training utterances, for a total of 2880 wutter
ances. The acoustic models of the speaker-independaptrsyst
were trained by performing 20 iterations of the Baum-Welch
algorithm ; each speaker-dependant system was trained by
adapting the speaker-independant system using 10 itesabio
Structural Maximum A Posteriori (SMAR)0]. We used the

2¢q can be the average supervector of all of the SD models or the
supervector extracted from the SI models.

SESPERE is a first order HMM-based speech recognition toolbox
developed at LORIA.

38000 coefficients) with a small number of adaptation data
(about500 frames), it was capable to find good solutions.

The versatility of the genetic algorithms is emphasizedhzy t
results ofGA + EV. IndeedGA + EV outperforms Eigen-
Voices. We explain this result by the fact that this method is
able to deliver some new acoustic models which can refine the
initial speaker space. The new initial speaker space wisich i

4We obtained87.3% in WAwith a speaker-independant system us-
ing a mixture of 32 gaussians per state, but the results=fdr and
G A + EV were not wholly available.



used by EigenVoices to build the reduced speaker spacernis the
located closer to the new speaker. The estimation of thehigeig
is, hence, carried out more accurately.

Further experiments with genetic algorithm are also in prsg

in unsupervised and incremental mode with several adaptati
utterances and higher values &%. We hope that they will
show further improvement in recognition performance.

7. Discussion

The improving of the recognition performances usigl or

G A+ EV goes along with an increase of the computation load
and of the memory needs required by such techniques based on
a genetic algorithm. These main drawbacks can be explained b
the fact that, unlike EigenVoices, which estimates onetimiu

in T iterations, a technique based on a genetic algorithm esti-
mates several solutions iN iterations, withN > T generally

and keeping in mind that one iteration A4 is much longer

than one iteration inEV. For instance, in our experiments,
Eigen\oices was abouttimes faster thadr A.

8. Conclusions

We have proposed in this paper two approaches based on a ge-
netic algorithm for speaker adaptation of acoustic modetsi
pervised batch mode. It has been shown experimentallyhibat t

G A technique which uses a genetic algorithm to estimate the
Gaussian means of a speaker-independant system imprsves it
performances as well as EigenVoices. Moreover, the scheme
GA + EV outperforms EigenVoices by providing to Eigen-
Voices a speaker space that is located closer to the newespeak
This implies that the estimation of the weights by Eigenésic
can be carried out more precisely.

Our future work will be focused on the estimation of the wésgh
with the help of a genetic algorithm. The weights in Eigen-
\Voices are currently carried out by thdaximum Likelihood
Eigen-Decompositioprocedure® and represent a linear com-
bination of acoustic models. The simplicity and versatitf

the genetic algorithms can then be used to estimate weights
which represent aolynomial combination of acoustic models
We anticipate that such a polynomial combination would pro-
duce adapted models which will be more accurate than adapted
models built from a linear combination of acoustic models- B
sides, such a technique would require less memory and a re-
duced computation load compareddel andGA + EV.
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