
Multi-Agent Approach to Modeling and Simulation of Urban Transportation
Systems

P. Gruer, V. Hilaire, A. Koukam

Universit́e de Technologie de Belfort Montbéliard.
Laboratoire Syst̀emes et Transports

Belfort Technop̂ole
90000 Belfort, France

E-mail: pablo.gruer@utbm.fr

Abstract

This work presents an approach to modelling and simu-
lation of urban public transport network. The main aspects
of the approach are agent orientation, combined use of for-
mal languages Object-Z and Statechart.
We are convinced that the adoption of formal languages
currently encoutered in the software engineering field, fa-
cilitates the construction of the simulation model and in-
troduces new benefits, such as reuse of model components.
Additionally, formal languages allow to verify some quali-
tative properties related to the correctness of the model be-
fore facing the simulation phase. Steel, the formal approach
allows for rapid construction of and execution of the simu-
lation itself, by using industrial working environments such
as Statemate.

1 Introduction

Urban public transports have received an increasing
amount of attention as they often thought of as a rational
alternative to the intensive use of existing urban networks
by private cars. The expansion of this transport mode im-
plies the infrastructure improvements, the master of the ur-
ban network traffic and other operational problems. Mod-
eling and simulation constitute an approach which can be
valuable in tackling some of these problems. This paper
presents a part of a research project, namely Urban Bus Net-
works that intends to design a framework based on generic
components for modeling and simulation of public transport
network dedicated to the bus operations in an urban area.
Toward this end, we propose a modular approach based
on agent oriented modeling and simulation. The choice
of agent technologies derives basically from two observa-

tions. First, an urban public transport network is a com-
plex system which involves a set of distributed and interact-
ing entities. Secondly, the global system behavior is made
of several emergent phenomena that result from the behav-
ior of the individual entities and their interactions. MAS
have already been used in the transportation domain. In-
deed, the agent abstraction allows the conception of micro-
scopic models which generates, at least conceptually, ar-
bitrarily realistic simulation of transports phenomenon [5].
For example, MAS have been applied for planning, opti-
mising and monitoring road haulage in the TELETRUCK
sytem [4]. The AGENDA system [3] provides cooperation
methods between agents in order to solve scheduling prob-
lems. Other projects aim to simulate traffic [5, 1, 2]. The
perspective is to help the decision process. Many problems,
like computing tractability or models accuracy, arise when
one try to simulate traffic with the multi-agent paradigm [5]
and different solutions for these problems have been found.
Despite the existence of several successful simulation envi-
ronment, the problem of reusing all or part of their under-
lying models still remain complex and difficult. We belive,
and the xeprerience bears this out, that a formal modeling
is fundamental to handle the complexity related to building
and reusing such models. The purpose of this paper is to
present a formal approach to multi-agent systems that fits
in with simulation of urban public transport networks. The
system is viewed as an organization which federates a set
of interacting agents. Each agent defines an abstract char-
acterization of the behavior of an active entity in the orga-
nization.

2 Agents for transportation simulation

2.1 Multi-Formalism Based Specification Lan-
guage

Many specification formalisms can be used to specify en-
tire system but few, if any, are particularly suited to model-
ing all aspects of such systems. For large or complex sys-
tems, like MAS, the specification may use more than one
formalism or extend one formalism.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright c©2001



The multi-formalism approaches [7, 6] compose two or
more formalisms in order to specify more easily and nat-
urally than with a single formalism. Indeed, the multi-
formalism approach deals with complexity by applying for-
malisms to problem aspects for which they are best suited
and to prove properties with proofs rules and transformation
techniques available in a specific formalism.
Our choice is to use Object-Z to specify the transforma-
tional aspects and statecharts to specify the reactive aspects.
Object-Z extends Z with object-oriented specification sup-
port. The basic construct is the class which encapsulates
state schema with all the operation schemas which may af-
fect its variables.
Statecharts extend finite state automata with constructs for
specifying parallelism, nested states and broadcast commu-
nication for events. Both language have constructs which
enable refinement of specification. Moreover, statecharts
have an operational semantic which allows the execution of
a specification.
Our method for composition of Object-Z and statecharts re-
lies on the meta-method of Paige [6]. The main step of this
method is the definition of an heterogeneous basis which is
a set of notations, translations and formalizations that pro-
vides a formal semantics to multi-formalism specifications.
In our case the main concept of the heterogeneous basis is
the integration of statecharts in Object-Z classes. We have
extended the expressive capabilities of each formalism by
features available in the other. The role of the heteroge-
neous basis is to provide formal means of expression with-
out translating a formalism in the other. In other words
the heterogeneous basis furnishes mean of communication
between partial specifications written in either Object-Z or
statecharts.
The class describes the attributes and operations of the ob-
jects. This description is based upon set theory and first
order predicates logic. The statechart describes the possi-
ble states of the object and events which may change these
states. A statechart included in an Object-Z class can use
attributes and operations of the class. The sharing mech-
anism used is based on name identity. Moreover, we in-
troduce basic types[Event,Action,Attribute]. Event is the
set of events which trigger transitions in statecharts.Action
is the set of statecharts actions and Object-Z classes opera-
tions. Attribute is the set of objects attributes. These types
also belong to the heterogeneous basis.
The LoadLockclass illustrates the integration of the two
formalisms. It specifies aLoadLock composed of two
doors which states evolve concurrently. Parallelism be-
tween the two doors is expressed by the dashed line between
DOOR1 andDOOR2. The first door reacts toactivate1 and
deactivate1 events. When someone enter theLoadLockhe
first activate the first door enter theLoadLockand deactivate
the first door. The transition triggered bydeactivate1 event

execute theinLL operation which sets thesomeoneInLL
boolean to true. Someone which is between the first and
the second door can activate the second door so as to open
it. The temporal invariant at the end of the class speci-
fies that the statechart must not be inDOOR1.openedand
DOOR2.openedstates simultaneously. This invariant uses
the predicateinstate(S) which is true wheneverS state is
active.

LoadLock

behavior

OffOn

position

sOff/arrêt

sOn/marche

someoneInLL: B

INIT

¬ someoneInLL

inLL
∆someoneInLL

someoneInLL′

outLL
∆someoneInLL

¬ someoneInLL′

¬3(instate(DOOR1.opened) ∧ instate(DOOR2.opened))

The notation for attribute modification consists of the
modified attributes which belongs to the∆-list. In any op-
eration sub-schema, attributes before their modification are
noted by their names and attributes after the operation are
suffixed by ’.
The result of the composition of Object-Z and statecharts
seems particularly suited in order to specify MAS. In-
deed, each formalism have constructs which enable com-
plex structure specification. Moreover, aspects such as re-
activity and concurrency can be easily dealt with. In fact,
available constructs enable natural specification of “low”
level aspects inherent to MAS. Higher level aspects like co-
ordination are expressed by roles, interactions and organi-
zations classes which we present in the following section.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright c©2001



2.2 Modeling of timed actions

Statecharts provide means of dealing with qualitative
analysis of discrete event systems. They use a logical model
of time based on a partial order on event occurrences, sub-
ject to restrictions such as causality. However, for quanti-
tative analysis, it is necessary and useful to introduce time
delays associated with actions to be performed by the sys-
tem. Additionally, we are interested in specifying the delays
randomly to model the system under uncertainty. Models
such as those proposed by stochastic Petri nets [1], intro-
duce timed transitions to represent the delay associated with
actions. A timed transition has an exponentially distributed
firing time that expresses the delay from the enabling to the
firing of the transition. This solution is not feasible here as it
is in conflict with the formal semantic of statecharts [6]. In-
deed, a transition in statecharts should be instantaneous. We
overcome such a problem by associating the time delay to
states or, in other words, we represent actions as states. In
addition, we define modeling capabilities to represent two
optional important features: first, associating a precondi-
tion to the modeled action and second, defining the effect of
the action on the value of the state variables of the model.

source state destination state

ACT>

static reactions :
entering/
sc!(end_ACT,
RAND_EXPONENTIAL(prod_rate));;

exiting/
buff_free:=buff_free−1;

T:[buff_free>0] end_ACT

Figure 1. A statechart model for a timed ac-
tion.

We illustrate the proposed approach to the modeling of
timed actions through an example: consider an action ACT
that consists of producing data items and storing them in a
data buffer. A new data item can be produced only if there
is a free location in the buffer. Producing a new data item
consumes an amount of time that is uncertain. Neverthe-
less, the production rate prodrate , i.e., the average number
of data items produced per unit of time by action ACT, is
known. Figure 2 illustrates the proposed construct, based
on static reactions associated with state ACT, which repre-
sents the action execution. In statechart notation, the sym-
bol ”¿” following the state identifier indicates that static re-
actions have been associated with the state. We introduce
state variable bufffree to represent the number of free loca-
tions in the buffer. Transition T activates state ACT, if pre-
condition bufffree 0 is verified. A static reaction, executed
upon entering ACT, consists in delaying an occurrence of
event endACT. To determine the delay amount, the prede-
fined randexponential function is used. Consequently, state
ACT remains active for a duration determined randomly,

with an exponential law. The effect of the action ACT on
state variable bufffree is represented by the static reaction
executed upon exiting the state: as a new data item has been
stored in the buffer, the number of free locations decreases.

2.3 Structural conflict

Structural conflicts represent non deterministic situations
where many mutually exclusive actions can be started. One
of those actions is randomly selected to be executed. The
modeling formalism should offer means to assign probabil-
ities to each one of the possible evolutions. Those model-
ing constructs are frequently called n-way random switches,
with n equal to the number of mutually exclusive issues.
Generally, an n-way random switch is considered to be in-
stantaneous, as the probabilistic choice is supposed to take
no time.

source state

SW>

entering/
static reactions :

fs!(outcome_1)

if RAND_BINOMIAL(1,p1)=1

then tr!(outcome_1) else

destination state 1

destination state 2

[outcome_1]

[not outcome_1]

Figure 2. A statechart model for a two-way
random switch.

Statecharts can resolve a structural conflict with two pos-
sible issues, (i.e., a two-way random switch) in the way il-
lustrated by figure 3. Upon entering state SW, a static reac-
tion is executed. It consists in randomly assigning value true
or false to a boolean variable outcome1. The standard func-
tion rand-binomial with parameters n=1 and p=p1 is used
to this end. The value of boolean variable outcome1 is then
used in conditions outcome1 and not outcome1 to select one
of two possible outgoing transitions. Consequently, p1 is
the probability of outcome1 being assigned value true. The
proposed statechart model of a two-way random switch can
be considered to be instantaneous, provided that the asyn-
chronous time model is adopted during simulation. If, on
the contrary, the synchronous time model is adopted, the
random switch operation will consume one unit of simu-
lated time.

3 Application

3.1 Formal specification

Two basic types need to be introduced for this specifica-
tion [StopId,LineId]. These types define identifiers for re-
spectively, BusStop and Line. TheBusStopclass specifies
an agent type which handle bus stops. Each of these agent
has a specific identity,id, and may connect several lines.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright c©2001



BusStop Bus

Section

Line Organisation

These lines are specified by theConnectionsconstant set.
The behavior of theBusStopagent is defined by the state-
chart included in theBehaviorsub-schema. The attributes
for this type of agent represent the number of persons wait-
ing. We distinguish people waiting for the direction D1 or
D2 of the line identified by lineId and people waiting for
a specific connection. ThepassMouvAtStopis executed as
soon as a bus enters theBusStopand takes as input param-
eter the number of passengers exiting a bus. These people
are distributed among the different connections following a
binomial law. This is done by the predefined RandomBi-
nomial function. This operation outputs the n! umber of
passengers waiting for the bus to theBusagent and assigns
zero to these attributes. Moreover, theGTNSD1 event is
scheduled by the predefined functionSchedulein order to
simulate the time during which the bus stays in the stop.

BusStop
Agent
Connections: PLineId
id : StopId
lineId : LineId

Behavior

passAtStopD1 : LineId→ N

passAtStopD2 : LineId→ N

waitingForConnectionD1 : LineId→ N

waitingForConnectionD2 : LineId→ N

passMouvAtStop
∆(BusStop)
passDown? : N
passIn! : N

passIn! = passAtStopD1(lineId)
+waitingConnectionD1(lineId)

passAtStopD1′ = 0
∧ waitingConnectionD1(lineId)′ = 0

∀ l∈ Connections• (l 6= lineId)⇒
waitingConnectiond1(l)′ =

RandomBinomial(passDown?,pd1(l))
∧ waitingConnectionD2(l)′ =

RandomBinomial(passDown?,pd2(l))
Schedule(GTNSD1(id, lineId),DelayAtSTop(passIn!))

TheBusagent class defines the type for the agent repre-
senting buses. Each of this agent has a maximum capacity
and a number of passengers which must be less or equal to
it. The two operations of the agent are for respectively peo-
ple exiting and entering the bus. These operations are inter-
leaved with thepassMouvAtStopoperation of theBusStop
agent. Indeed, when a bus arrives in a stop the squence
busPassOutAtStop‖ passMouvAtStop‖ busPassInAtStop
is executed and each operation outputs are equated with the
inputs of the next operation.

Bus
Agent
capacity: N+

Behavior

passengers: N+

passengers≤ capacity

busPassOutAtStop
∆(Bus)
passDown! : N

passengers′ = passengers− passDown!

busPassInAtStop
∆(Bus)
passIn? : N

passengers′ = passengers+ passIn?

References

[1] J. Cremer, J. Kearney, and Y. Papelis. HCSM: A frame-
work for behavior and scenario in virtual environments.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright c©2001



ACM Transactions on Modeling and Computer Simulation,
5(3):242–267, July 1995.

[2] K. Erol, R. Levy, and J. Wenthworth. Application of agent
technology to traffic simulation. InComplex Systems, Intelli-
gent and Interfaces, 1998.

[3] K. Fischer, B. Chaib-draa, J. P. M̈uller, M. Pischel, and
C. Gerber. A simulation approach based on negotiation and
cooperation between agents: A case study.IEEE Transactions
on Systems, Man and Cybernetics, 1999.

[4] K. Fischer, J. P. M̈uller, and M. Pischel. Cooperative
transportation scheduling an application domain for DAI.
Research Report RR-95-01, Deutsches Forschungszentrum
für Künstliche Intelligenz, Deutsches Forschungszentrum
für Künstliche Intelligenz GmbH Erwin-Schrödinger Strasse
Postfach 2080 67608 Kaiserslautern Germany, 1995.

[5] K. Nagel, R. J. Beckamn, and C. L. Barrett. TRANSIMS for
transportation planning. InProceedings of the International
Conference on Complex Systems, 1998.

[6] R. F. Paige. A meta-method for formal method integra-
tion. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
FME’97: Industrial Applications and Strengthened Founda-
tions of Formal Methods (Proc. 4th Intl. Symposium of For-
mal Methods Europe, Graz, Austria, September 1997), vol-
ume 1313 ofLecture Notes in Computer Science, pages 473–
494. Springer-Verlag, Sept. 1997. ISBN 3-540-63533-5.

[7] P. Zave and M. Jackson. Conjunction as composition.
acm Transactions of Software Engineering and Methodology,
2(4):379–411, Oct. 1993.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright c©2001


